
International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 3, Issue 7

1

Review on Complex Analytics on Large Scale Graph

Structure Data in Cloud

 Harsha J. Kolhe Amitkumar Manekar

Abstract — Nowadays with the advent of the internet there is an

increasing interest in executing rich and complex analysis tasks

over large scale graphs. Examples of these tasks are ego network

analysis, motif counting, finding social circles, anomaly detection

and so on. This work are not well served by the vertex centric

approach and by using this approach there is a problem of high

communication, scheduling and memory overheads.

 There is a NScale, a novel end to end graph processing

framework that is used to enables the distributed execution of

complex sub-graph centric analytics over large scale graphs in

the cloud.

Key Words- cloud computing, graph analytics, NScale, Vertex

centric framework.

I. INTRODUCTION

Graphs are very attractive when it comes to modeling real

world data , because they are flexible more than tables and

rows in a RDBMS. Representing information network data as

a graph is most natural with nodes representing the entities

and edges denoting the interaction between them. There is

growing need for executing complex analytics over such

graph data to get valuable insights into the networks

functional abilities, for scientific discovery, for event or

anomaly detection and so on. As the world is moving

towards an evolution of Big Data, representing such data in

forms of graphs and performing graph analytics over such

large volumes of graph data has become a crucial task.

Developing distributed graph processing frameworks for such

tasks is being adopted widely everywhere. Consider a simple

example of social network which uses graphs for its

representation. Social networks are naturally modeled as

graphs where entities are the nodes, and an edge connects two

nodes if the nodes are related by the relationship that

characterizes the network. The existing frameworks use

vertex-centric approach but underperform due to large

communication overheads and slow iterative convergence.

Instead a novel approach called NSCALE[8] is suggested

which uses sub-graph-centric framework. This approach

allows users to write programs at neighborhood or sub-graph

level. NSCALE uses Apache YARN[8], a state-of-the-art data

processing framework, for efficient and fault-tolerant

distribution of data and computation.

II. LITERATURE SURVEY

A large number of complex analysis tasks on graphs needs to

be applied to data concerning online social networks, road

transportation , citation networks, biological networks, IP

traffic data, communication and messaging networks,
financial networks, and many others to extract different types

of results like ego network analysis[7], motif counting[2],

finding social circles[1], personalized recommendations, link

prediction, anomaly detection[6],, and so on. There are

various approaches adopted for large graph processing like

Pregel[3], Apache Giraph, Grace[5].

In these frameworks, user write vertex level programs that

are executed by the framework in asynchronous fashion.

Communication between vertices is done using message

passing or shared memory & parallelism is controlled by the

chosen consistency model. But the models used in all these

approaches limit the user program’s access to a single

vertex’s state or sometimes to the neighbor's local state in

addition.

example, to analyze a small part of a graph say a

neighborhood of a node, we have to gather all the

information from neighbors through message-passing and

reconstruct those neighborhoods locally in the vertex program

local state. This involves a huge communication overhead and

high memory requirements which arise from duplication of

state. These overheads will increase with increasing size of

the network to be processed.

III. NSCALE APPROACH

NSCALE allows users to write programs at the level of a

subgraph rather than a vertex level[8]. It allows users to

specify:

(a) a set of sub-graphs or neighborhoods of interest, using a

high level specification language, and

 (b) a user-specified program that should be executed on those

sub-graphs, potentially in an iterative fashion.

International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 3, Issue 7

2

 Fig.1. YARN Architecture

The user program is written against a general graph API

(specifically, BluePrints), and has access to the entire state of

the sub-graph[13] against which it is being executed. The

approach can be used to compute the connected components

in all the sub-graphs of interest. It uses specification format

that allows users to specify sub-graphs of interest as k-hop

neighborhoods around a set of query vertices, followed by a

filter on the nodes and the edges in the neighborhood. It also

allows selecting subgraphs induced by certain attributes of the

of the nodes.

NScale ensures that each of the sub graphs of interest was

entirely in memory at one of the machines while it is being

executed against. It focuses on one-pass analytics that do not

require iterative execution unlike the previous approaches.

GEL is the graph extraction and loading layer which extracts

the relevant data from the underlying graph, and employs a

cost-based optimizer for data replication and placement. In

doing this it aims to minimize the number of machines needed

and balances load amongst them.

NScale uses a distributed execution engine that executes user-

specified computation on the subgraphs in distributed

memory. The execution engine finds out the overlap between

subgraphs and then employs several optimizations that reduce

the memory duplications without compromising correctness.

NScale avoids iterative execution by using one-pass analytics.

NScale uses YARN which is architecture for distributed

execution as shown in fig 1. It is used for computation and

data distribution.

The YARN framework provides transparent data and

computation distribution, and fault tolerance for NScale.
YARN(Yet Another Resource Negotiator) supports multiple

workloads.
The Resource Manager is responsible for resource allocation.

Node Manager forms data computation framework. A

framework specific library called Application Master is

responsible for individual applications execution and

monitoring. Frameworks can interact with YARN using

Hadoop. Thus YARN provides better scalability and fault

tolerance for NSCALE.

IV. NSCALE ARCHITECTURE

 Fig. 2. High level overview of NScale

The main components of NScale architecture (as shown in

fig.2) are GEL, the graph extraction and loading module and

the distributed execution engine which are woven together by

the YARN framework[8] .The topmost layer is the NScale

user API to used by developers to specify the subgraphs of

interest and the kernel computation that needs to be run on the

subgraphs. NScale supports the storage of the underlying

graph in a variety of different formats including edge lists,

adjacency lists, and in a variety of different types of persistent

storage engines including key-value pairs, specialized

indexes stored in flat files, relational databases, etc.

Graph Extraction Engine-

GEL is a phase in which graph extraction and loading is

performed which extracts the relevant portions of the graph

and utilizes a cost-based optimizer to partition and load the

graph onto distributed memory using as few machines as

possible to minimize the communication cost. GEL processes

the raw graph data and extracts the relevant portions, i.e., the

sub-graphs of interest from the underlying graph. GEL acts as

a 2-stage MapReduce (MR) job over YARN. Graph

compression and sub-graph extraction is used to reduce the

size of the graph.

Distributed Execution Engine-

Another major component of NScale is Distributed Execution

Engine. It runs as a runtime library inside each reducer and

uses master-slave concept. The partition-master identifies the

subgraphs specified by the user and owned by the partition

using parameters passed by the reducer.

 CONCLUSION

Previous vertex-centric are limited in their ability to express

and efficiently execute complex and rich graph analytics

tasks. NScale proposes a sub-graph-centric framework where

the users can write computations against entire sub-graphs or

International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 3, Issue 7

3

multi-hop neighborhoods in the graph and provide ease-of-use

and efficiency. Also the graph extraction and loading phase

saves total execution time for small where when Apache

Giraph fails.

 REFERENCES

[1] J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego

Networks. In NIPS, 2012.

[2] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U.

Alon. Network motifs: Simple building blocks of complex networks. Science,

2002.

[3] G. Malewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski. Pregel: a system for large-scale graph processing. In

SIGMOD, 2010.

[4] G. Wang, W. Xie, A. J. Demers, and J. Gehrke. Asynchronous Large-

Scale Graph Processing Made Easy. In CIDR, 2013.

[5] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. OddBall:

spotting anomalies in weighted graphs. In PAKDD, 2010.

[6] L. Backstrom and J. Leskovec. Supervised random walks: Predicting and

recommending links in social networks. CoRR, 2010.

[7] Martin Everett and Stephen P Borgatti. Ego network betweenness. Social

networks, 27(1):31–38, 2005.

[8] NScale: Neighborhood-centric Large-Scale Graph Analytics in the Cloud

Abdul Quamar University of Maryland Amol Deshpande University of

Maryland Jimmy Lin University of Maryland.

[9] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson. From

”Think Like a Vertex” to ”Think Like a Graph”. PVLDB, 2013.

[10] J. Seo, S. Guo, and M. S. Lam. Socialite: Datalog extensions for efficient

social network analysis. In ICDE, 2013.

[11] S. Salihoglu and J. Widom. GPS: a graph processing system. In SSDBM,

2013.

[12] Tomonori Izumi,ToshihikoYokomaru,Atsushi Takahashi, and Yoji

Kajitani. Computational complexity analysis of set-bin-packing problem.

IEICE TRANSACTIONS on Fundamentals of Electronics, Communications

and Computer Sciences, 81(5):842–849, 1998.

[13] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling

algorithm for estimating subgraph concentrations and detecting network

motifs. Bioinformatics, 2004.

