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Abstract — Nowadays with the advent of the internet there is an 

increasing interest in executing rich and complex analysis tasks 

over large scale graphs. Examples of these tasks are ego network 

analysis, motif counting, finding social circles, anomaly detection 

and so on. This work are not well served by the vertex centric 

approach and by using this approach there is a problem of high 

communication, scheduling and memory overheads. 

 There is a NScale, a novel end to end graph processing 

framework that is used to enables the distributed execution of 

complex sub-graph centric analytics over large scale graphs in 

the cloud. 

 

Key Words- cloud computing, graph analytics, NScale, Vertex 

centric framework.  

 

I. INTRODUCTION 
 

Graphs are very attractive when it comes to modeling real 

world data , because they are flexible more than tables and 

rows in a RDBMS. Representing information network data as 

a graph is most natural with nodes representing the entities 

and edges denoting the interaction between them. There is 

growing need for executing complex analytics over such 

graph data to get valuable insights into the networks 

functional abilities, for scientific discovery, for event or 

anomaly detection  and  so on. As the world is moving 

towards an evolution  of  Big  Data, representing such data in 

forms of graphs and performing graph analytics over such 

large volumes of graph data has become a crucial task. 

Developing distributed graph processing frameworks for such 

tasks is being adopted widely everywhere. Consider a simple 

example of social network which uses graphs for its 

representation. Social networks are naturally modeled as 

graphs where entities are the nodes, and an edge connects two 

nodes if the nodes are related by the relationship that 

characterizes the network. The existing frameworks use 

vertex-centric approach but underperform due to large 

communication overheads and slow iterative convergence. 

Instead a novel approach called  NSCALE[8]  is suggested 

which uses sub-graph-centric framework. This approach 

allows users to write programs at neighborhood or sub-graph 

level. NSCALE uses Apache YARN[8], a state-of-the-art data 

processing framework, for efficient and fault-tolerant 

distribution of data and computation. 

II. LITERATURE SURVEY 

 
A large number of complex analysis tasks on graphs needs to 

be applied to data concerning online social networks, road 

transportation , citation networks, biological networks, IP 

traffic data, communication and messaging networks, 
financial networks, and many others to extract different types 

of  results like ego network analysis[7], motif counting[2], 

finding social circles[1], personalized recommendations, link 

prediction, anomaly detection[6],, and so on. There are 

various  approaches adopted for large graph processing like 

Pregel[3], Apache Giraph, Grace[5].  

In these frameworks, user  write vertex level programs that 

are executed by the framework in asynchronous fashion. 

Communication between vertices is done using message 

passing or shared memory & parallelism is controlled by the 

chosen consistency model. But the models used in all these 

approaches limit the user program’s access to a single 

vertex’s state or sometimes to the neighbor's local state in 

addition.     

example, to analyze a small part of a graph say a 

neighborhood  of a node, we have to gather all the 

information from neighbors through message-passing and 

reconstruct those neighborhoods locally in the vertex program 

local state. This involves a huge communication overhead and 

high memory requirements which arise from duplication of 

state. These overheads will increase with increasing size of 

the network to be processed. 

 

III. NSCALE APPROACH 
 

NSCALE allows users to write programs at the level of a 

subgraph rather  than a vertex level[8]. It allows users to 

specify:  

(a) a set of sub-graphs or neighborhoods of interest, using a 

high level specification language, and 

 (b) a user-specified program that should be executed on those 

sub-graphs, potentially in an iterative fashion.  
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  Fig.1. YARN Architecture 

 

The user program is written against a general graph API 

(specifically, BluePrints), and has access to the entire state of 

the sub-graph[13] against which it is being executed. The 

approach can be used to compute the connected components 

in all the sub-graphs of interest. It uses specification format 

that allows users to specify sub-graphs of interest as k-hop 

neighborhoods  around a set of query vertices, followed by a 

filter on the nodes and the edges in the neighborhood. It also 

allows selecting subgraphs induced by certain attributes of the 

of the nodes. 

NScale ensures that each of the sub graphs of interest was 

entirely in memory at one of the machines while it is being 

executed against. It focuses on one-pass analytics that do not 

require iterative execution unlike the previous approaches. 

GEL is the graph extraction and loading layer which extracts 

the relevant data from the underlying graph, and employs a 

cost-based optimizer for data replication and placement. In 

doing this it aims to minimize the number of machines needed 

and balances load amongst them. 

NScale uses a distributed execution engine that executes user-

specified computation on the subgraphs in distributed 

memory. The execution engine finds out the overlap between 

subgraphs and then employs several optimizations that reduce 

the memory duplications without compromising correctness. 

NScale avoids iterative execution by using one-pass analytics. 

NScale uses YARN which is architecture for distributed 

execution as shown in fig 1. It is used for computation and 

data distribution.  

The YARN framework provides transparent data and 

computation distribution, and fault tolerance for NScale. 
YARN(Yet Another Resource Negotiator) supports multiple 

workloads. 
The Resource Manager is responsible for resource allocation. 

Node Manager forms data computation framework. A 

framework specific library called Application Master is 

responsible for individual applications execution and 

monitoring. Frameworks can interact with YARN using 

Hadoop. Thus YARN provides better scalability and fault 

tolerance for NSCALE. 

 

 

IV. NSCALE ARCHITECTURE 

 

 

      Fig. 2. High level overview of NScale 

 

The main components of NScale architecture (as shown in 

fig.2) are GEL, the graph extraction and loading module and 

the distributed execution engine which are woven together by 

the YARN framework[8] .The topmost layer is the NScale 

user API to used by developers to specify the subgraphs of 

interest and the kernel computation that needs to be run on the 

subgraphs. NScale supports the storage of the underlying 

graph in a variety of different formats including edge lists, 

adjacency lists, and in a variety of different types of persistent 

storage  engines including key-value pairs, specialized 

indexes stored in flat files, relational databases, etc. 

 

Graph Extraction Engine- 

GEL is a phase in which graph extraction and loading is 

performed which extracts the relevant portions of the graph 

and utilizes a cost-based optimizer to partition and load the 

graph onto distributed memory using as few machines as 

possible to minimize the communication cost. GEL processes 

the raw graph data and extracts the relevant portions, i.e., the 

sub-graphs of interest from the underlying graph. GEL acts as 

a 2-stage MapReduce (MR) job over YARN. Graph 

compression and sub-graph extraction is used to reduce the 

size of the graph. 

 

Distributed Execution Engine-   

Another major component of NScale is Distributed Execution 

Engine. It runs as a runtime library inside each reducer and 

uses master-slave concept. The partition-master identifies the 

subgraphs specified by the user and owned by the partition 

using parameters passed by the reducer. 

 

             CONCLUSION 

 
Previous vertex-centric are limited in their ability to express 

and efficiently execute complex and rich graph analytics 

tasks.  NScale proposes a sub-graph-centric framework where 

the users can write computations against entire sub-graphs or 
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multi-hop neighborhoods in the graph and provide ease-of-use 

and efficiency. Also the graph extraction and loading phase  

saves total execution time for small where when Apache 

Giraph fails.  
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